

Blender Kit Building Manual

Effect Pedal Kits: Blender

The **Blender** a simple little circuit that lets you **mix one signal with another**. The original signal is connected to *In* and *Out* jacks, and the signal you want to blend is connected to *Send* and *Return*. Then, with the Mix pot, you can set the **amount of each signal** you want to have in your output. A **Level trimmer** has been added so you can set the Blender volume: besides of mixing, you can also use the **Blender kit as a booster**!

With our **Blender kit** you'll be able to experiment and get a whole **new variety of tones**. For example, you can mix a bit of fuzz with your dry signal, and set the amount with the *Blend* potentiometer. That way you would still retain the bass end.

Quick connection example: lets say you want to **mix a bit of fuzz to your dry signal** to give your tone a bit more of character, but without being too aggressive. The connections would be: *In* jack to guitar output, *Out* jack to amplifier input, *Send* jack to fuzz input, and *Return* jack to fuzz output.

BOM (1/2)

Resistors (5)				Capacitors (2)		
2	R1, R2	1M		1	C1	100n (guitar) /1u(bass)
1	R3	4.7k		1	C2	10u
2	R4, R5	100k				

Note: Capacitors both guitar and bass are included. For guitar, use C1=100n, for bass use C1=1u

BOM (2/2)

Diodes, Transistors and ICs			Generic Parts and Potentiometers	Generic Parts and Potentiometers			
1 1	Q1 LEV	J113 100k trimmer	1 Battery clip				
-			1RLED1k LED resistor1LED Bezel113PDT6.35mm Jacks				
			1 100k Logarithmic (A) Potentiometer Mix				

Component Placement

Board Layouts

<u>3PDT PCB</u>

Effect PCB

Building Tips

1- Pay attention to the **orientation of the 3PDT**! In the following picture you can see how the 3PDT pins should be positioned (inserting the pins in the holes can be a bit tight to avoid movement while soldering):

2- For a proper soldering you just have to apply the right amount of solder wire. A right solder joint should have a concave shape around the joint and look like this:

- 3- Don't apply too much heat! When soldering, the time you hold the solder iron against the joint should be **as short as posible** to avoid damaging any part (a few seconds should be enough). If you can't get a solder joint right, **let it cool** a bit before trying again.
- 4- If having troubles with the building, checking the schematic in the last page will help you find **where the audio signal stops**. When you find the spot, check out that **everything around that joint is ok** (components placed at their right place, solder joints...).

Building Tips

5- Pay attention to the **parts that have a polarity** and make sure they are connected as in the component placement picture:

- <u>ICs</u> (they have a small dot or indication that must fit the indication in the board

	\sim	0		0
0	U1	0	0	о
0		0	0	0
0		0	0	о
0		0	0	0
0		0	0	0
0		0	0	0
0		0	0	0

- **<u>Electrolytic capacitors</u>** (longer pin is connected to the "+" hole):

- **<u>Diodes</u>** (check for the mark and make it fit with the one in the PCB):

- Leds (longer pin is connected to the "+" hole)

- <u>Transistors</u> (inserted to fit the drawing in the PCB)

Schematic

